Further Results on Bar k-Visibility Graphs
نویسندگان
چکیده
A bar visibility representation of a graph G is a collection of horizontal bars in the plane corresponding to the vertices of G such that two vertices are adjacent if and only if the corresponding bars can be joined by an unobstructed vertical line segment. In a bar k-visibility graph, two vertices are adjacent if and only if the corresponding bars can be joined by a vertical line segment that intersects at most k other bars. Bar kvisibility graphs were introduced by Dean, Evans, Gethner, Laison, Safari, and Trotter in [3],[4]. In this paper, we present sharp upper bounds on the maximum number of edges in a bar k-visibility graph on n vertices and the largest order of a complete bar k-visibility graph. We also discuss regular bar k-visibility graphs and forbidden induced subgraphs of bar k-visibility graphs. Mathematics Subject Classification (2000): 05C62
منابع مشابه
Further results on arc and bar k-visibility graphs
We consider visibility graphs involving bars and arcs in which lines of sight can pass through at most k objects. We prove a new edge bound for arc k-visibility graphs, provide maximal constructions for arc visibility graphs and semi-arc k-visibility graphs, and give a complete characterization of semi-arc visibility graphs. We further show that the family of arc i-visibility graphs is never co...
متن کاملOn Visibility Graphs — Upper Bounds and Classification of Special Types
We examine several types of visibility graphs: bar and semi-bar k-visibility graphs, rectangle k-visibility graphs, arc and circle k-visibility graphs, and compact visibility graphs. We improve the upper bound on the thickness of bar k-visibility graphs from 2k(9k − 1) to 6k, and prove that the upper bound must be at least k + 1. We also show that the upper bound on the thickness of semi-bar k-...
متن کاملBar k-Visibility Graphs: Bounds on the Number of Edges, Chromatic Number, and Thickness
Let S be a set of horizontal line segments, or bars, in the plane. We say that G is a bar visibility graph, and S its bar visibility representation, if there exists a one-to-one correspondence between vertices of G and bars in S, such that there is an edge between two vertices in G if and only if there exists an unobstructed vertical line of sight between their corresponding bars. If bars are a...
متن کاملMore directions in visibility graphs
In this paper we introduce unit bar k-visibility graphs, which are bar kvisibility graphs in which every bar has unit length. We show that almost all families of unit bar k-visibility graphs and unit bar k-visibility graphs are incomparable under set inclusion. In addition, we establish the largest complete graph that is a unit bar k-visibility graph. As well, we present a family of hyperbox vi...
متن کاملBar k-Visibility Graphs
Let S be a set of horizontal line segments, or bars, in the plane. We say that G is a bar visibility graph, and S its bar visibility representation, if there exists a one-to-one correspondence between vertices of G and bars in S, such that there is an edge between two vertices in G if and only if there exists an unobstructed vertical line of sight between their corresponding bars. If bars are a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 21 شماره
صفحات -
تاریخ انتشار 2007